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Some notations

Graphs in this talk may contain multiple edges but no loops.

A (proper) k-edge-coloring ϕ of G is a mapping ϕ from E(G) to
{1, 2, · · · , k} (whose elements are called colors) such that no two
incident edges receive the same color.

The chromatic index χ′ := χ′(G) is the least integer k such that G has a
k-edge-coloring. Clearly, χ′(G) ≥ ∆(G).
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Another Lower Bound - Density

Let ϕ be a k-edge-coloring of G, U be an odd subset of V (G) and Eα be the
set of edges colored by α with both ends in U .

|Eα| ≤ |U |−12 .

|E(U)| =
∑

α∈[1,k] |Eα| ≤ k ·
|U |−1

2 , hence

k ≥ 2|E(U)|
|U |−1 .

k ≥ ω := max
{

2|E(U)|
|U |−1 : U ⊆ V, |U | ≥ 3 and odd

}
.

ω := ω(G) is called the density of G.

χ′ ≥ max{∆, dωe}.
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Vizing’s Theorem and the Goldberg-Seymour Conjecture

Shannon’s bound (1949)

Let G be a multigraph. Then χ′(G) ≤ 3
2∆(G).

Vizing’s Theorem (1964)
Let G be a multigraph with multiplicity µ. Then χ′(G) ≤ ∆(G) + µ.

The Goldberg-Seymour conjecture
In the 1970s, Goldberg and Seymour independently conjectured that
χ′(G) ≤ max{∆(G) + 1, dω(G)e}, which is equivalent to saying that if
χ′(G) ≥ ∆ + 2, then χ′(G) = dω(G)e.
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The fractional chromatic index

Holyer in 1980 proved that determining the chromatic index of a graph is
NP-complete, even when restricted to a simple cubic graph.

A fractional edge coloring of G is a non-negative weighting w(.) of the set
M(G) of matchings in G such that, for every edge e ∈ E(G),∑

M∈M:e∈M w(M) = 1. Clearly, such a weighting w(.) exists. The fractional
chromatic index χ′f := χ′f (G) is the minimum total weight

∑
M∈Mw(M)

over all fractional edge colorings of G. By definition, we have χ′ ≥ χ′f ≥ ∆.
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Consequences of the Goldberg-Seymour conjecture

Seymour showed that χ′f can be computed in polynomial time and
χ′f (G) = max{∆(G), ω(G)}.

So the Goldberg-Seymour conjecture implies that:

A polynomial time algorithm to approximate the chromatic index within
one color by computing χ′f . In fact, determining the chromatic index is
considered to be one of the easiest NP-complete problems in this sense.

There are only two possible choices for χ′(G): max{∆(G), dω(G)e}
and max{∆(G) + 1, dω(G)e}.
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Several related conjectures

Jakobsen (1973)

Let G be a critical graph and χ′(G) > m
m−3∆(G) + m−3

m−1 for an odd integer
m ≥ 3, then |V (G)| ≤ m− 2.

Seymour (1979)
If G is an r-regular graph such that |∂G(X)| ≥ r for every set X ⊆ V (G)
with |X| odd (such a graph is said to be an r-graph), then G satisfies
χ′(G) ≤ r + 1.

2|E(X)| ≤ r|X| − r for every odd subset X .

ω(G) = 2|E(X)|
|X|−1 ≤

r|X|−r
|X|−1 = r.

So χ′(G) ≤ max{r + 1, dω(G)e} = r + 1.
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Kempe change

A graph G is called critical if χ′(H) < χ′(G) for any proper subgraph
H ⊆ G. A graph G is called k-critical if it is critical and χ′(G) = k + 1.

For the rest of this talk, we let G = (E, V ) be a k-critical graph,
e ∈ EG(x, y) be an edge of G and ϕ be a k-edge-coloring of G− e.
For two colors α and β, an (α, β)-chain is a connected component of G
induced by edges colored by α and β. An (α, β)-chain is called an
(α, β)-path if it is indeed a path.

Let P be an (α, β)-path (chain) under the k-edge coloring ϕ. Then ϕ′

obtained from ϕ by interchanging colors α and β along P is also a
k-edge coloring. This operation is called a Kempe Change, and is
denoted by ϕ′ = ϕ/P .
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More notations

For any v ∈ V , let ϕ(v):= {ϕ(e) : e ∈ E(v)} denote the set of colors
presented at v and ϕ(v)= {1, 2, · · · , k}\ϕ(v) the set of colors missing at
v.

For any vertex set X ⊆ V , let ϕ(X)= ∪x∈Xϕ(x) be the set of colors
missing at some vertices of X .
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More notations

An equivalent argument to the Goldberg-Seymour conjecture
The Goldberg-Seymour conjecture holds if and only if there is a vertex set
Z ⊆ V (G) with e ∈ E(Z) which is both elementary and strongly closed for
every k-critical graph G with k > ∆ + 1.

A vertex set X ⊆ V (G) is called elementary if ϕ(v) ∩ ϕ(w) = ∅ for any
two distinct vertices v, w ∈ X .

An edge f is called a boundary edge of X if f has exact one end-vertex
in X and denote by ∂(X) the set of all boundary edges of X . We call X
closed if there is no missing color in vertices of X are assigned to any
edges in ∂(X).

A color α is called a defective color of X if it appears more than once on
edges in ∂(X). Moreover, a closed vertex set X is called strongly closed
if there is no defective colors of X .
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More Notations

An equivalent argument to the Goldberg-Seymour conjecture
The Goldberg-Seymour conjecture holds if and only if there is a vertex set
Z ⊆ V (G) with e ∈ E(Z) which is both elementary and strongly closed for
every k-critical graph G with k > ∆ + 1.

Too see this, let Z ⊆ V (G) be a strongly closed elementary set. Then

|Z| is odd.

Each color in ϕ(Z) induces |Z|−12 many edges in G[Z].

Each color in {1, 2, ..., k} − ϕ(Z) induces |Z|−12 many edges in G[Z].

This gives us k |Z|−12 many edges. With the uncolored edge e, we see that
dω(Z)e ≥ k + 1 = χ′(G), as desired.
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Tashkinov Trees

A Tashkinov tree T = (y0, e1, y1, e2, · · · , yp−1, ep, yp) is an alternating
sequence of distinct vertices yi and edges ei of G, such that the endvertices of
each ei are yi+1 and yr for some r ∈ {1, 2, . . . , i}, e1 = e and ϕ(ei) is
missing at yj for some j < i. Note that the edge set of T indeed forms a tree.
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Tashkinov Trees

A Tashkinov tree T = (y0, e1, y1, e2, · · · , yp−1, ep, yp) is an alternating
sequence of distinct vertices yi and edges ei of G, such that the endvertices of
each ei are yi+1 and yr for some r ∈ {1, 2, . . . , i}, e1 = e and ϕ(ei) is
missing at yj for some j < i. Note that the edge set of T indeed forms a tree.

Weakness of the Tashkinov trees.
A Tashkinov tree may not be strongly closed, though it could be closed.

A Tashkinov tree must have each edge added with a color missing at a
vertex before that edge.
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Generalization

A tree sequence T = (y0, e1, y1, e2, · · · , yp−1, ep, yp) is an alternating
sequence of distinct vertices yi and edges ei of G, such that the
endvertices of each ei are yi+1 and yr for some r ∈ {1, 2, . . . , i}.

If a tree sequence T is not closed, the algorithm of adding an edge
f ∈ ∂(T ) and the corresponded vertex with ϕ(f) ∈ ϕ(T ) to T is called
Tashkinov Augmenting Algorithm (TAA).

A closure T of T is a tree-sequence obtained from T by applying TAA
repeatedly until T is closed.
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New ideas

For any color set C, an edge-k-coloring ϕ∗ of G− e is (T,C, ϕ)-stable if
the following two properties hold.

1 ϕ∗(f) = ϕ(f) for every edge f incident to T with ϕ(f) ∈ ϕ(T ) ∪ C.
2 ϕ∗(v) = ϕ(v) for any v ∈ V (T ), which gives ϕ∗(T ) = ϕ(T ).

We say a coloring ϕ∗ is (∅, ∅, ϕ)-stable if ϕ∗ is an edge-k-coloring ϕ∗ of
G− e.

Goals of this concept
To make sure that defective colors stay defective, and closed colors stay
closed.

To make induction work properly.
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New ideas

Colors α and β are T -interchangeable if there is at most one (α, β)-path
intersecting T .

Goal of this concept
To have colors interchanging with defective colors along a color
alternating chain.

Example
Let T be a closed Tashkinov tree of G under ϕ. Then every color α ∈ ϕ(T ) is
interchangeable with every color in ϕ for T .
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A proof of the example

Consider a counter-example as the above figure where α and β are not
interchangeable, and assume among all the counter-examples,
|P1|+ |P2|+ |P3| = L is minimum.
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A proof of the example

Note that T is still a Tashkinov tree under ϕ1 obtained from ϕ by switching γ
and α outside of T .
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A proof of the example

Let ϕ2 = ϕ1/P1.

Guangming Jing (Georgia State University) The Goldberg-Seymour Conjecture 17 / 23



A proof of the example

Let T ′ be a closed Tashkinov tree obtained from T (u1) after adding the
vertices v2 and v3. Note that we have a contradiction to the elementariness of
the Tashkinov trees if one of w1, w2, w3 is contained in T ′, and a
contradiction to |P1|+ |P2|+ |P3| = L being minimum otherwise.

Guangming Jing (Georgia State University) The Goldberg-Seymour Conjecture 17 / 23



Ideas

Starting from an elementary tree sequence T which is not closed, we
reserve two interchangeable colors for each defective color before it is
missing when applying TAA to find a closure of T through a few “steps”,
and prove its closure is elementary.

Starting from an closed elementary tree sequence T , we find a new
vertex v /∈ T such that T ∪ v is elementary if T is not strongly closed.
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Ideas

For the second point, we need to introduce two main types of extensions if T
is closed but not strongly closed. Assume δ is a defective color in this case.

Series Extension (SE): If T ∪ {g, v} is elementary under all
(T,C, ϕ)-stable colorings, we extend T ∪ {g, v} to its closure under ϕ.
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Ideas

For the second point, we need to introduce two main types of extensions if T
is closed but not strongly closed. Assume δ is a defective color in this case.

Parallel Extension (PE): If the SE requirement is not satisfied, we can
then assume that there exists a color γ ∈ ϕ(u) ∪ ϕ(v). Recolor the edge
g by γ, update the coloring ϕ, and find a closure of T under this new
coloring.
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Elementariness of PE extensions

For a PE extension, we have a different situation than an SE extension, as we
only add one more vertex to an SE extension to start this phase of our
induction. Let T (u) be the subsequence of T ending at u. Then a closure
T ′ := T (u) contains at least two vertices not in T . We claim that T ∪ T ′ is
elementary under the updated ϕ.
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Main Theorem

Let n be a nonnegative integer and (G, e, ϕ) be a k-triple with k ≥ ∆ + 1.
Then for every ETT T satisfying MP with ladder T0 ⊂ T1 ⊂ · · · ⊂ Tn ⊂ T
and coloring sequence (ϕ0, ϕ1, . . . , ϕn), the following six statements hold.

A1: For any positive integer l with l ≤ n, if vl is a supporting vertex and
m(vl) = j, then every (Tl, Dl, ϕl)-stable coloring ϕ∗l is
(Tvl − {vl}, Dj−1, ϕj−1)-stable, particularly, ϕ∗l is
(Tj−1, Dj−1, ϕj−1)-stable. For any two supporting vertices vs and vt with
s, t ≤ n, if m(vs) = m(vt) but vs 6= vt, then Ss ∩ St = ∅.

A2: If Θn = PE, then under any (Tn, Dn, ϕn)-stable coloring ϕ∗n, we have
Pvn(γn, δn, ϕ

∗
n) ∩ Tn = {vn} where Sn = {δn, γn}.
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Main Theorem

A3: For any (Tn, Dn, ϕn)-stable coloring ϕ∗n, if δ is a defective color of Tn
under ϕ∗n and v ∈ a(∂ϕ∗

n,δ(Tn)) where v is not the smallest vertex along ≺` in
a(∂ϕ∗

n,δ(Tn)), then v ≺` vi for any supporting or extension vertex vi with
i ≥ m(v).

A4: Every (Tn, Dn, ϕn)-stable coloring ϕ∗n is a ϕn mod T coloring and every
corresponding ETT T ∗ obtained from Tn under ϕ∗n using the same extension
type as Tn → T also satisfies MP.

A5: T is elementary under ϕn.

A6: T has Interchangeable Missing Colors property if T is closed.
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Thanks for your attention!
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