The Goldberg-Seymour Conjecture on the edge coloring of multigraphs

Guangming Jing

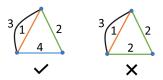
Georgia State University Atlanta, GA

Nov 3rd, 2018

Joint work with Guantao Chen and Wenan Zang

Some notations

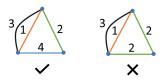
- Graphs in this talk may contain multiple edges but no loops.
- A (proper) k-edge-coloring φ of G is a mapping φ from E(G) to $\{1, 2, \dots, k\}$ (whose elements are called colors) such that no two incident edges receive the same color.



• The chromatic index $\chi' := \chi'(G)$ is the least integer k such that G has a k-edge-coloring. Clearly, $\chi'(G) \geq \Delta(G)$.

Some notations

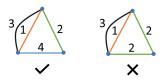
- Graphs in this talk may contain multiple edges but no loops.
- A (proper) k-edge-coloring φ of G is a mapping φ from E(G) to $\{1, 2, \dots, k\}$ (whose elements are called colors) such that no two incident edges receive the same color.



• The chromatic index $\chi' := \chi'(G)$ is the least integer k such that G has a k-edge-coloring. Clearly, $\chi'(G) \geq \Delta(G)$.

Some notations

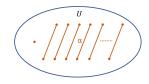
- Graphs in this talk may contain multiple edges but no loops.
- A (proper) k-edge-coloring φ of G is a mapping φ from E(G) to $\{1, 2, \dots, k\}$ (whose elements are called colors) such that no two incident edges receive the same color.



• The chromatic index $\chi' := \chi'(G)$ is the least integer k such that G has a k-edge-coloring. Clearly, $\chi'(G) \geq \Delta(G)$.

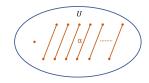
Let φ be a k-edge-coloring of G, U be an odd subset of V(G) and E_{α} be the set of edges colored by α with both ends in U.

•
$$|E_{\alpha}| \leq \frac{|U|-1}{2}$$
.



- $|E(U)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \frac{|U|-1}{2}$, hence
- $k \ge \frac{2|E(U)|}{|U|-1}$.
- $k \ge \omega := \max \left\{ \frac{2|E(U)|}{|U|-1} : U \subseteq V, |U| \ge 3 \text{ and odd} \right\}.$
- $\omega := \omega(G)$ is called the density of G.
- $\chi' \ge \max\{\Delta, \lceil \omega \rceil\}$.

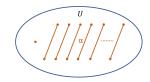
Let φ be a k-edge-coloring of G, U be an odd subset of V(G) and E_{α} be the set of edges colored by α with both ends in U.



- $|E(U)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \frac{|U|-1}{2}$, hence
- $k \ge \frac{2|E(U)|}{|U|-1}$.
- $\bullet \ k \geq \omega := \max \Big\{ \tfrac{2|E(U)|}{|U|-1} : \ U \subseteq V, \ |U| \geq 3 \ and \ odd \Big\}.$
- $\omega := \omega(G)$ is called the density of G.
- $\chi' \ge \max\{\Delta, \lceil \omega \rceil\}$.

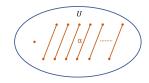
Let φ be a k-edge-coloring of G, U be an odd subset of V(G) and E_{α} be the set of edges colored by α with both ends in U.

•
$$|E_{\alpha}| \leq \frac{|U|-1}{2}$$
.



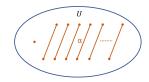
- $|E(U)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \frac{|U|-1}{2}$, hence
- $k \ge \frac{2|E(U)|}{|U|-1}$.
- $\bullet \ k \geq \omega := \max \Big\{ \tfrac{2|E(U)|}{|U|-1} : \ U \subseteq V, \ |U| \geq 3 \ and \ odd \Big\}.$
- $\omega := \omega(G)$ is called the density of G.
- $\chi' \ge \max\{\Delta, \lceil \omega \rceil\}.$

Let φ be a k-edge-coloring of G, U be an odd subset of V(G) and E_{α} be the set of edges colored by α with both ends in U.



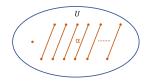
- $|E(U)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \frac{|U|-1}{2}$, hence
- $k \ge \frac{2|E(U)|}{|U|-1}$.
- $\bullet \ k \geq \omega := \max \Big\{ \tfrac{2|E(U)|}{|U|-1} : \ U \subseteq V, \ |U| \geq 3 \ and \ odd \Big\}.$
- $\omega := \omega(G)$ is called the density of G.
- $\chi' \ge \max\{\Delta, \lceil \omega \rceil\}.$

Let φ be a k-edge-coloring of G, U be an odd subset of V(G) and E_{α} be the set of edges colored by α with both ends in U.



- $|E(U)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \frac{|U|-1}{2}$, hence
- $k \ge \frac{2|E(U)|}{|U|-1}$.
- $\bullet \ k \geq \omega := \max \Big\{ \tfrac{2|E(U)|}{|U|-1} : \ U \subseteq V, \ |U| \geq 3 \ and \ odd \Big\}.$
- $\omega := \omega(G)$ is called the density of G.
- $\chi' \ge \max\{\Delta, \lceil \omega \rceil\}.$

Let φ be a k-edge-coloring of G, U be an odd subset of V(G) and E_{α} be the set of edges colored by α with both ends in U.



- $|E(U)| = \sum_{\alpha \in [1,k]} |E_{\alpha}| \le k \cdot \frac{|U|-1}{2}$, hence
- $k \ge \frac{2|E(U)|}{|U|-1}$.
- $\bullet \ k \geq \omega := \max \Big\{ \tfrac{2|E(U)|}{|U|-1} : \ U \subseteq V, \ |U| \geq 3 \ and \ odd \Big\}.$
- $\omega := \omega(G)$ is called the density of G.
- $\chi' \ge \max\{\Delta, \lceil \omega \rceil\}.$

Vizing's Theorem and the Goldberg-Seymour Conjecture

Shannon's bound (1949)

Let G be a multigraph. Then $\chi'(G) \leq \frac{3}{2}\Delta(G)$.

Vizing's Theorem (1964)

Let G be a multigraph with multiplicity μ . Then $\chi'(G) \leq \Delta(G) + \mu$.

The Goldberg-Seymour conjecture

In the 1970s, Goldberg and Seymour independently conjectured that $\chi'(G) \leq \max\{\Delta(G)+1,\lceil\omega(G)\rceil\}$, which is equivalent to saying that if $\chi'(G) \geq \Delta+2$, then $\chi'(G) = \lceil\omega(G)\rceil$.

The fractional chromatic index

Holyer in 1980 proved that determining the chromatic index of a graph is NP-complete, even when restricted to a simple cubic graph.

A fractional edge coloring of G is a non-negative weighting w(.) of the set $\mathcal{M}(G)$ of matchings in G such that, for every edge $e \in E(G)$, $\sum_{M \in \mathcal{M}: e \in M} w(M) = 1$. Clearly, such a weighting w(.) exists. The fractional chromatic index $\chi'_f := \chi'_f(G)$ is the minimum total weight $\sum_{M \in \mathcal{M}} w(M)$ over all fractional edge colorings of G. By definition, we have $\chi' \geq \chi'_f \geq \Delta$.

Consequences of the Goldberg-Seymour conjecture

Seymour showed that χ_f' can be computed in polynomial time and $\chi_f'(G) = \max\{\Delta(G), \omega(G)\}.$

So the Goldberg-Seymour conjecture implies that:

- A polynomial time algorithm to approximate the chromatic index within one color by computing χ'_f . In fact, determining the chromatic index is considered to be one of the easiest NP-complete problems in this sense.
- There are only two possible choices for $\chi'(G)$: $\max\{\Delta(G), \lceil \omega(G) \rceil\}$ and $\max\{\Delta(G)+1, \lceil \omega(G) \rceil\}$.

Consequences of the Goldberg-Seymour conjecture

Seymour showed that χ_f' can be computed in polynomial time and $\chi_f'(G) = \max\{\Delta(G), \omega(G)\}.$

So the Goldberg-Seymour conjecture implies that:

- A polynomial time algorithm to approximate the chromatic index within one color by computing χ'_f . In fact, determining the chromatic index is considered to be one of the easiest NP-complete problems in this sense.
- There are only two possible choices for $\chi'(G)$: $\max\{\Delta(G), \lceil \omega(G) \rceil\}$ and $\max\{\Delta(G)+1, \lceil \omega(G) \rceil\}$.

Consequences of the Goldberg-Seymour conjecture

Seymour showed that χ_f' can be computed in polynomial time and $\chi_f'(G) = \max\{\Delta(G), \omega(G)\}.$

So the Goldberg-Seymour conjecture implies that:

- A polynomial time algorithm to approximate the chromatic index within one color by computing χ'_f . In fact, determining the chromatic index is considered to be one of the easiest NP-complete problems in this sense.
- There are only two possible choices for $\chi'(G)$: $\max\{\Delta(G), \lceil \omega(G) \rceil\}$ and $\max\{\Delta(G)+1, \lceil \omega(G) \rceil\}$.

Jakobsen (1973)

Let G be a critical graph and $\chi'(G) > \frac{m}{m-3}\Delta(G) + \frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

- $2|E(X)| \le r|X| r$ for every odd subset X.
- $\omega(G) = \frac{2|E(X)|}{|X|-1} \le \frac{r|X|-r}{|X|-1} = r$.
- So $\chi'(G) \le \max\{r+1, \lceil \omega(G) \rceil\} = r+1$.

Jakobsen (1973)

Let G be a critical graph and $\chi'(G) > \frac{m}{m-3}\Delta(G) + \frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

- $2|E(X)| \le r|X| r$ for every odd subset X.
- $\omega(G) = \frac{2|E(X)|}{|X|-1} \le \frac{r|X|-r}{|X|-1} = r$.
- So $\chi'(G) \le \max\{r+1, \lceil \omega(G) \rceil\} = r+1$.

Jakobsen (1973)

Let G be a critical graph and $\chi'(G) > \frac{m}{m-3}\Delta(G) + \frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

- $2|E(X)| \le r|X| r$ for every odd subset X.
- $\omega(G) = \frac{2|E(X)|}{|X|-1} \le \frac{r|X|-r}{|X|-1} = r$.
- So $\chi'(G) \le \max\{r+1, \lceil \omega(G) \rceil\} = r+1$.

Jakobsen (1973)

Let G be a critical graph and $\chi'(G) > \frac{m}{m-3}\Delta(G) + \frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

- $2|E(X)| \le r|X| r$ for every odd subset X.
- $\omega(G) = \frac{2|E(X)|}{|X|-1} \le \frac{r|X|-r}{|X|-1} = r$.
- So $\chi'(G) \leq \max\{r+1, \lceil \omega(G) \rceil\} = r+1$.

Jakobsen (1973)

Let G be a critical graph and $\chi'(G) > \frac{m}{m-3}\Delta(G) + \frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

- $2|E(X)| \le r|X| r$ for every odd subset X.
- $\omega(G) = \frac{2|E(X)|}{|X|-1} \le \frac{r|X|-r}{|X|-1} = r$.
- So $\chi'(G) \le \max\{r+1, \lceil \omega(G) \rceil\} = r+1$.

Kempe change

- A graph G is called <u>critical</u> if $\chi'(H) < \chi'(G)$ for any proper subgraph $H \subseteq G$. A graph G is called k-critical if it is critical and $\chi'(G) = k + 1$. For the rest of this talk, we let G = (E, V) be a k-critical graph, $e \in E_G(x, y)$ be an edge of G and φ be a k-edge-coloring of G e.
- For two colors α and β , an (α, β) -chain is a connected component of G induced by edges colored by α and β . An (α, β) -chain is called an (α, β) -path if it is indeed a path.
- Let P be an (α, β) -path (chain) under the k-edge coloring φ . Then φ' obtained from φ by interchanging colors α and β along P is also a k-edge coloring. This operation is called a Kempe Change, and is denoted by $\varphi' = \varphi/P$.

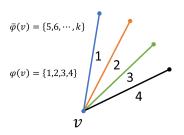
Kempe change

- A graph G is called <u>critical</u> if $\chi'(H) < \chi'(G)$ for any proper subgraph $H \subseteq G$. A graph G is called k-critical if it is critical and $\chi'(G) = k + 1$. For the rest of this talk, we let G = (E, V) be a k-critical graph, $e \in E_G(x, y)$ be an edge of G and φ be a k-edge-coloring of G e.
- For two colors α and β , an (α, β) -chain is a connected component of G induced by edges colored by α and β . An (α, β) -chain is called an (α, β) -path if it is indeed a path.
- Let P be an (α, β) -path (chain) under the k-edge coloring φ . Then φ' obtained from φ by interchanging colors α and β along P is also a k-edge coloring. This operation is called a Kempe Change, and is denoted by $\varphi' = \varphi/P$.

Kempe change

- A graph G is called <u>critical</u> if $\chi'(H) < \chi'(G)$ for any proper subgraph $H \subseteq G$. A graph G is called k-critical if it is critical and $\chi'(G) = k + 1$. For the rest of this talk, we let G = (E, V) be a k-critical graph, $e \in E_G(x, y)$ be an edge of G and φ be a k-edge-coloring of G e.
- For two colors α and β , an (α, β) -chain is a connected component of G induced by edges colored by α and β . An (α, β) -chain is called an (α, β) -path if it is indeed a path.
- Let P be an (α, β) -path (chain) under the k-edge coloring φ . Then φ' obtained from φ by interchanging colors α and β along P is also a k-edge coloring. This operation is called a Kempe Change, and is denoted by $\varphi' = \varphi/P$.

• For any $v \in V$, let $\varphi(v) := \{ \varphi(e) : e \in E(v) \}$ denote the set of colors presented at v and $\overline{\varphi}(v) = \{1, 2, \cdots, k\} \setminus \varphi(v)$ the set of colors missing at v.



• For any vertex set $X \subseteq V$, let $\overline{\varphi}(X) = \bigcup_{x \in X} \overline{\varphi}(x)$ be the set of colors missing at some vertices of X.

• For any $v \in V$, let $\varphi(v) := \{ \varphi(e) : e \in E(v) \}$ denote the set of colors presented at v and $\overline{\varphi}(v) = \{1, 2, \cdots, k\} \setminus \varphi(v)$ the set of colors missing at v.



• For any vertex set $X \subseteq V$, let $\overline{\varphi}(X) = \bigcup_{x \in X} \overline{\varphi}(x)$ be the set of colors missing at some vertices of X.

An equivalent argument to the Goldberg-Seymour conjecture

- A vertex set $X \subseteq V(G)$ is called elementary if $\overline{\varphi}(v) \cap \overline{\varphi}(w) = \emptyset$ for any two distinct vertices $v, w \in X$.
- An edge f is called a boundary edge of X if f has exact one end-vertex in X and denote by $\partial(X)$ the set of all boundary edges of X. We call X closed if there is no missing color in vertices of X are assigned to any edges in $\partial(X)$.
- A color α is called a **defective** color of X if it appears more than once on edges in $\partial(X)$. Moreover, a closed vertex set X is called **strongly closed** if there is no defective colors of X.

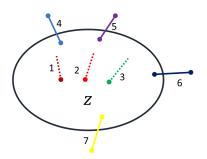
An equivalent argument to the Goldberg-Seymour conjecture

- A vertex set $X \subseteq V(G)$ is called elementary if $\overline{\varphi}(v) \cap \overline{\varphi}(w) = \emptyset$ for any two distinct vertices $v, w \in X$.
- An edge f is called a boundary edge of X if f has exact one end-vertex in X and denote by $\partial(X)$ the set of all boundary edges of X. We call X closed if there is no missing color in vertices of X are assigned to any edges in $\partial(X)$.
- A color α is called a **defective** color of X if it appears more than once on edges in $\partial(X)$. Moreover, a closed vertex set X is called **strongly closed** if there is no defective colors of X.

An equivalent argument to the Goldberg-Seymour conjecture

- A vertex set $X \subseteq V(G)$ is called elementary if $\overline{\varphi}(v) \cap \overline{\varphi}(w) = \emptyset$ for any two distinct vertices $v, w \in X$.
- An edge f is called a boundary edge of X if f has exact one end-vertex in X and denote by $\partial(X)$ the set of all boundary edges of X. We call X closed if there is no missing color in vertices of X are assigned to any edges in $\partial(X)$.
- A color α is called a defective color of X if it appears more than once on edges in $\partial(X)$. Moreover, a closed vertex set X is called strongly closed if there is no defective colors of X.

An equivalent argument to the Goldberg-Seymour conjecture



An equivalent argument to the Goldberg-Seymour conjecture

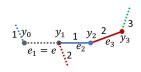
The Goldberg-Seymour conjecture holds if and only if there is a vertex set $Z \subseteq V(G)$ with $e \in E(Z)$ which is both elementary and strongly closed for every k-critical graph G with $k > \Delta + 1$.

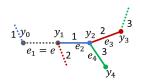
Too see this, let $Z \subseteq V(G)$ be a strongly closed elementary set. Then

- |Z| is odd.
- Each color in $\overline{\varphi}(Z)$ induces $\frac{|Z|-1}{2}$ many edges in G[Z].
- Each color in $\{1,2,...,k\} \overline{\varphi}(Z)$ induces $\frac{|Z|-1}{2}$ many edges in G[Z].
- This gives us $k\frac{|Z|-1}{2}$ many edges. With the uncolored edge e, we see that $\lceil \omega(Z) \rceil \ge k+1 = \chi'(G)$, as desired.

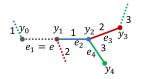
$$1 y_0 \qquad y_1$$

$$e_1 = e$$





A Tashkinov tree $T=(y_0,e_1,y_1,e_2,\cdots,y_{p-1},e_p,y_p)$ is an alternating sequence of distinct vertices y_i and edges e_i of G, such that the endvertices of each e_i are y_{i+1} and y_r for some $r\in\{1,2,\ldots,i\},\,e_1=e$ and $\varphi(e_i)$ is missing at y_j for some j< i. Note that the edge set of T indeed forms a tree.



Weakness of the Tashkinov trees.

- A Tashkinov tree may not be strongly closed, though it could be closed.
- A Tashkinov tree must have each edge added with a color missing at a vertex before that edge.

Generalization

- A tree sequence $T=(y_0,e_1,y_1,e_2,\cdots,y_{p-1},e_p,y_p)$ is an alternating sequence of distinct vertices y_i and edges e_i of G, such that the endvertices of each e_i are y_{i+1} and y_r for some $r \in \{1,2,\ldots,i\}$.
- If a tree sequence T is not closed, the algorithm of adding an edge $f \in \partial(T)$ and the corresponded vertex with $\varphi(f) \in \overline{\varphi}(T)$ to T is called Tashkinov Augmenting Algorithm (TAA).
- A closure \overline{T} of T is a tree-sequence obtained from T by applying TAA repeatedly until T is closed.

Generalization

- A tree sequence $T = (y_0, e_1, y_1, e_2, \cdots, y_{p-1}, e_p, y_p)$ is an alternating sequence of distinct vertices y_i and edges e_i of G, such that the endvertices of each e_i are y_{i+1} and y_r for some $r \in \{1, 2, \dots, i\}$.
- If a tree sequence T is not closed, the algorithm of adding an edge $f \in \partial(T)$ and the corresponded vertex with $\varphi(f) \in \overline{\varphi}(T)$ to T is called Tashkinov Augmenting Algorithm (TAA).
- A closure \overline{T} of T is a tree-sequence obtained from T by applying TAA repeatedly until T is closed.

Generalization

- A tree sequence $T = (y_0, e_1, y_1, e_2, \dots, y_{p-1}, e_p, y_p)$ is an alternating sequence of distinct vertices y_i and edges e_i of G, such that the endvertices of each e_i are y_{i+1} and y_r for some $r \in \{1, 2, \dots, i\}$.
- If a tree sequence T is not closed, the algorithm of adding an edge $f \in \partial(T)$ and the corresponded vertex with $\varphi(f) \in \overline{\varphi}(T)$ to T is called Tashkinov Augmenting Algorithm (TAA).
- A closure \overline{T} of T is a tree-sequence obtained from T by applying TAA repeatedly until T is closed.

- For any color set C, an edge-k-coloring φ^* of G e is (T, C, φ) -stable if the following two properties hold.

 - $\overline{\varphi}^*(v) = \overline{\varphi}(v)$ for any $v \in V(T)$, which gives $\overline{\varphi}^*(T) = \overline{\varphi}(T)$.

We say a coloring φ^* is $(\emptyset, \emptyset, \varphi)$ -stable if φ^* is an edge-k-coloring φ^* of G - e.

Goals of this concept

- To make sure that defective colors stay defective, and closed colors stay closed.
- To make induction work properly.

- For any color set C, an edge-k-coloring φ^* of G e is (T, C, φ) -stable if the following two properties hold.

 - $\overline{\varphi}^*(v) = \overline{\varphi}(v)$ for any $v \in V(T)$, which gives $\overline{\varphi}^*(T) = \overline{\varphi}(T)$.

We say a coloring φ^* is $(\emptyset, \emptyset, \varphi)$ -stable if φ^* is an edge-k-coloring φ^* of G - e.

Goals of this concept

- To make sure that defective colors stay defective, and closed colors stay closed.
- To make induction work properly.

• Colors α and β are T-interchangeable if there is at most one (α, β) -path intersecting T.

Goal of this concept

• To have colors interchanging with defective colors along a color alternating chain.

Example

Let T be a closed Tashkinov tree of G under φ . Then every color $\alpha \in \overline{\varphi}(T)$ is interchangeable with every color in φ for T.

• Colors α and β are T-interchangeable if there is at most one (α, β) -path intersecting T.

Goal of this concept

 To have colors interchanging with defective colors along a color alternating chain.

Example

Let T be a closed Tashkinov tree of G under φ . Then every color $\alpha \in \overline{\varphi}(T)$ is interchangeable with every color in φ for T.

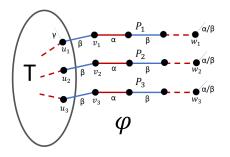
• Colors α and β are T-interchangeable if there is at most one (α, β) -path intersecting T.

Goal of this concept

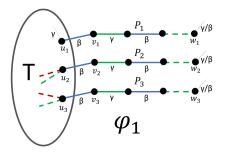
 To have colors interchanging with defective colors along a color alternating chain.

Example

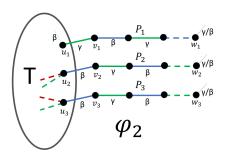
Let T be a closed Tashkinov tree of G under φ . Then every color $\alpha \in \overline{\varphi}(T)$ is interchangeable with every color in φ for T.



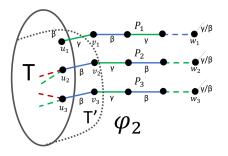
Consider a counter-example as the above figure where α and β are not interchangeable, and assume among all the counter-examples, $|P_1|+|P_2|+|P_3|=L$ is minimum.



Note that T is still a Tashkinov tree under φ_1 obtained from φ by switching γ and α outside of T.



Let $\varphi_2 = \varphi_1/P_1$.

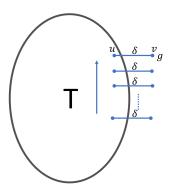


Let T' be a closed Tashkinov tree obtained from $T(u_1)$ after adding the vertices v_2 and v_3 . Note that we have a contradiction to the elementariness of the Tashkinov trees if one of w_1, w_2, w_3 is contained in T', and a contradiction to $|P_1| + |P_2| + |P_3| = L$ being minimum otherwise.

- Starting from an elementary tree sequence T which is not closed, we
 reserve two interchangeable colors for each defective color before it is
 missing when applying TAA to find a closure of T through a few "steps",
 and prove its closure is elementary.
- Starting from an closed elementary tree sequence T, we find a new vertex $v \notin T$ such that $T \cup v$ is elementary if T is not strongly closed.

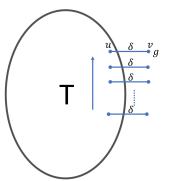
- Starting from an elementary tree sequence T which is not closed, we
 reserve two interchangeable colors for each defective color before it is
 missing when applying TAA to find a closure of T through a few "steps",
 and prove its closure is elementary.
- Starting from an closed elementary tree sequence T, we find a new vertex $v \notin T$ such that $T \cup v$ is elementary if T is not strongly closed.

For the second point, we need to introduce two main types of extensions if T is closed but not strongly closed. Assume δ is a defective color in this case.



• Series Extension (SE): If $T \cup \{g,v\}$ is elementary under all (T,C,φ) -stable colorings, we extend $T \cup \{g,v\}$ to its closure under φ .

For the second point, we need to introduce two main types of extensions if T is closed but not strongly closed. Assume δ is a defective color in this case.



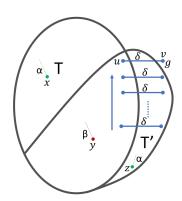
• Parallel Extension (PE): If the SE requirement is not satisfied, we can then assume that there exists a color $\gamma \in \overline{\varphi}(u) \cup \overline{\varphi}(v)$. Recolor the edge g by γ , update the coloring φ , and find a closure of T under this new coloring.

Elementariness of PE extensions

For a PE extension, we have a different situation than an SE extension, as we only add one more vertex to an SE extension to start this phase of our induction. Let T(u) be the subsequence of T ending at u. Then a closure $T':=\overline{T(u)}$ contains at least two vertices not in T. We claim that $T\cup T'$ is elementary under the updated φ .

Elementariness of PE extensions

For a PE extension, we have a different situation than an SE extension, as we only add one more vertex to an SE extension to start this phase of our induction. Let T(u) be the subsequence of T ending at u. Then a closure $T':=\overline{T(u)}$ contains at least two vertices not in T. We claim that $T\cup T'$ is elementary under the updated φ .



Main Theorem

Let n be a nonnegative integer and (G, e, φ) be a k-triple with $k \ge \Delta + 1$. Then for every ETT T satisfying MP with ladder $T_0 \subset T_1 \subset \cdots \subset T_n \subset T$ and coloring sequence $(\varphi_0, \varphi_1, \ldots, \varphi_n)$, the following six statements hold.

A1: For any positive integer l with $l \leq n$, if v_l is a supporting vertex and $m(v_l) = j$, then every (T_l, D_l, φ_l) -stable coloring φ_l^* is $(T_{v_l} - \{v_l\}, D_{j-1}, \varphi_{j-1})$ -stable, particularly, φ_l^* is $(T_{j-1}, D_{j-1}, \varphi_{j-1})$ -stable. For any two supporting vertices v_s and v_t with $s, t \leq n$, if $m(v_s) = m(v_t)$ but $v_s \neq v_t$, then $S_s \cap S_t = \emptyset$.

A2: If $\Theta_n = PE$, then under any (T_n, D_n, φ_n) -stable coloring φ_n^* , we have $P_{v_n}(\gamma_n, \delta_n, \varphi_n^*) \cap T_n = \{v_n\}$ where $S_n = \{\delta_n, \gamma_n\}$.

Main Theorem

A3: For any (T_n, D_n, φ_n) -stable coloring φ_n^* , if δ is a defective color of T_n under φ_n^* and $v \in a(\partial_{\varphi_n^*,\delta}(T_n))$ where v is not the smallest vertex along \prec_ℓ in $a(\partial_{\varphi_n^*,\delta}(T_n))$, then $v \prec_\ell v_i$ for any supporting or extension vertex v_i with $i \geq m(v)$.

A4: Every (T_n, D_n, φ_n) -stable coloring φ_n^* is a $\varphi_n \mod T$ coloring and every corresponding ETT T^* obtained from T_n under φ_n^* using the same extension type as $T_n \to T$ also satisfies MP.

A5: T is elementary under φ_n .

A6: T has Interchangeable Missing Colors property if T is closed.

Thanks for your attention!