The Goldberg-Seymour Conjecture on the edge coloring of multigraphs

Guangming Jing

Georgia State University
Atlanta, GA

Nov 3rd, 2018
Joint work with Guantao Chen and Wenan Zang

Some notations

- Graphs in this talk may contain multiple edges but no loops.
- A (proper) k-edge-coloring φ of G is a mapping φ from $E(G)$ to $\{1,2, \cdots, k\}$ (whose elements are called colors) such that no two incident edges receive the same color.

- The chromatic index $\chi^{\prime}:=\chi^{\prime}(G)$ is the least integer k such that G has a k-edge-coloring. Clearly, $\chi^{\prime}(G) \geq \Delta(G)$.

Some notations

- Graphs in this talk may contain multiple edges but no loops.
- A (proper) k-edge-coloring φ of G is a mapping φ from $E(G)$ to $\{1,2, \cdots, k\}$ (whose elements are called colors) such that no two incident edges receive the same color.

- The chromatic index $\chi^{\prime}:=\chi^{\prime}(G)$ is the least integer k such that G has a k-edge-coloring. Clearly, $\chi^{\prime}(G) \geq \Delta(G)$.

Some notations

- Graphs in this talk may contain multiple edges but no loops.
- A (proper) k-edge-coloring φ of G is a mapping φ from $E(G)$ to $\{1,2, \cdots, k\}$ (whose elements are called colors) such that no two incident edges receive the same color.

- The chromatic index $\chi^{\prime}:=\chi^{\prime}(G)$ is the least integer k such that G has a k-edge-coloring. Clearly, $\chi^{\prime}(G) \geq \Delta(G)$.

Another Lower Bound - Density

Let φ be a k-edge-coloring of G, U be an odd subset of $V(G)$ and E_{α} be the set of edges colored by α with both ends in U.

- $\left|E_{\alpha}\right| \leq \frac{|U|-1}{2}$.

- $|E(U)|=\sum_{\alpha \in[1, k]}\left|E_{\alpha}\right| \leq k \cdot \frac{|U|-1}{2}$, hence
- $k \geq \frac{2|E(U)|}{|U|-1}$.
- $k \geq \omega:=\max \left\{\frac{2|E(U)|}{|U|-1}: U \subseteq V,|U| \geq 3\right.$ and odd $\}$
- $\omega:=\omega(G)$ is called the density of G.
- $\chi^{\prime} \geq \max \{\Delta,\lceil\omega\rceil\}$.

Another Lower Bound - Density

Let φ be a k-edge-coloring of G, U be an odd subset of $V(G)$ and E_{α} be the set of edges colored by α with both ends in U.

- $\left|E_{\alpha}\right| \leq \frac{|U|-1}{2}$.

- $|E(U)|=\sum_{\alpha \in[1, k]}\left|E_{\alpha}\right| \leq k \cdot \frac{|U|-1}{2}$, hence
- $k \geq \frac{2|E(U)|}{|U|-1}$
- $k \geq \omega:=\max \left\{\frac{2|E(U)|}{|U|-1}: U \subseteq V,|U| \geq 3\right.$ and odd $\}$
- $\omega:=\omega(G)$ is called the density of G.
- $\chi^{\prime} \geq \max \{\Delta,\lceil\omega\rceil\}$.

Another Lower Bound - Density

Let φ be a k-edge-coloring of G, U be an odd subset of $V(G)$ and E_{α} be the set of edges colored by α with both ends in U.

- $\left|E_{\alpha}\right| \leq \frac{|U|-1}{2}$.

- $|E(U)|=\sum_{\alpha \in[1, k]}\left|E_{\alpha}\right| \leq k \cdot \frac{|U|-1}{2}$, hence
- $k \geq \frac{2|E(U)|}{|U|-1}$.
- $k \geq \omega:=\max \left\{\frac{2|E(U)|}{|U|-1}: U \subseteq V,|U| \geq 3\right.$ and odd $\}$
- $\omega:=\omega(G)$ is called the density of G.

Another Lower Bound - Density

Let φ be a k-edge-coloring of G, U be an odd subset of $V(G)$ and E_{α} be the set of edges colored by α with both ends in U.

- $\left|E_{\alpha}\right| \leq \frac{|U|-1}{2}$.

- $|E(U)|=\sum_{\alpha \in[1, k]}\left|E_{\alpha}\right| \leq k \cdot \frac{|U|-1}{2}$, hence
- $k \geq \frac{2|E(U)|}{|U|-1}$.
- $k \geq \omega:=\max \left\{\frac{2|E(U)|}{|U|-1}: U \subseteq V,|U| \geq 3\right.$ and odd $\}$.
- $\omega:=\omega(G)$ is called the density of G.
- $\chi^{\prime} \geq \max \{\Delta,\lceil\omega\rceil\}$

Another Lower Bound - Density

Let φ be a k-edge-coloring of G, U be an odd subset of $V(G)$ and E_{α} be the set of edges colored by α with both ends in U.

- $\left|E_{\alpha}\right| \leq \frac{|U|-1}{2}$.

- $|E(U)|=\sum_{\alpha \in[1, k]}\left|E_{\alpha}\right| \leq k \cdot \frac{|U|-1}{2}$, hence
- $k \geq \frac{2|E(U)|}{|U|-1}$.
- $k \geq \omega:=\max \left\{\frac{2|E(U)|}{|U|-1}: U \subseteq V,|U| \geq 3\right.$ and odd $\}$.
- $\omega:=\omega(G)$ is called the density of G.

Another Lower Bound - Density

Let φ be a k-edge-coloring of G, U be an odd subset of $V(G)$ and E_{α} be the set of edges colored by α with both ends in U.

- $\left|E_{\alpha}\right| \leq \frac{|U|-1}{2}$.

- $|E(U)|=\sum_{\alpha \in[1, k]}\left|E_{\alpha}\right| \leq k \cdot \frac{|U|-1}{2}$, hence
- $k \geq \frac{2|E(U)|}{|U|-1}$.
- $k \geq \omega:=\max \left\{\frac{2|E(U)|}{|U|-1}: U \subseteq V,|U| \geq 3\right.$ and odd $\}$.
- $\omega:=\omega(G)$ is called the density of G.
- $\chi^{\prime} \geq \max \{\Delta,\lceil\omega\rceil\}$.

Vizing's Theorem and the Goldberg-Seymour Conjecture

Shannon's bound (1949)

Let G be a multigraph. Then $\chi^{\prime}(G) \leq \frac{3}{2} \Delta(G)$.

Vizing's Theorem (1964)

Let G be a multigraph with multiplicity μ. Then $\chi^{\prime}(G) \leq \Delta(G)+\mu$.

The Goldberg-Seymour conjecture

In the 1970s, Goldberg and Seymour independently conjectured that $\chi^{\prime}(G) \leq \max \{\Delta(G)+1,\lceil\omega(G)\rceil\}$, which is equivalent to saying that if $\chi^{\prime}(G) \geq \Delta+2$, then $\chi^{\prime}(G)=\lceil\omega(G)\rceil$.

The fractional chromatic index

Holyer in 1980 proved that determining the chromatic index of a graph is NP-complete, even when restricted to a simple cubic graph.

A fractional edge coloring of G is a non-negative weighting $w($.$) of the set$ $\mathcal{M}(G)$ of matchings in G such that, for every edge $e \in E(G)$, $\sum_{M \in \mathcal{M}: e \in M} w(M)=1$. Clearly, such a weighting $w($.$) exists. The fractional$ chromatic index $\chi_{f}^{\prime}:=\chi_{f}^{\prime}(G)$ is the minimum total weight $\sum_{M \in \mathcal{M}} w(M)$ over all fractional edge colorings of G. By definition, we have $\chi^{\prime} \geq \chi_{f}^{\prime} \geq \Delta$.

Consequences of the Goldberg-Seymour conjecture

Seymour showed that χ_{f}^{\prime} can be computed in polynomial time and $\chi_{f}^{\prime}(G)=\max \{\Delta(G), \omega(G)\}$.
So the Goldberg-Seymour conjecture implies that:

- A polynomial time algorithm to approximate the chromatic index within one color by computing χ_{f}^{\prime}. In fact, determining the chromatic index is considered to be one of the easiest NP-complete problems in this sense.
- There are only two possible choices for $\chi^{\prime}(G): \max \{\Delta(G),\lceil\omega(G)\rceil\}$ and $\max \{\Delta(G)+1,\lceil\omega(G)\rceil\}$.

Consequences of the Goldberg-Seymour conjecture

Seymour showed that χ_{f}^{\prime} can be computed in polynomial time and $\chi_{f}^{\prime}(G)=\max \{\Delta(G), \omega(G)\}$.
So the Goldberg-Seymour conjecture implies that:

- A polynomial time algorithm to approximate the chromatic index within one color by computing χ_{f}^{\prime}. In fact, determining the chromatic index is considered to be one of the easiest NP-complete problems in this sense.
- There are only two possible choices for $\chi^{\prime}(G): \max \{\Delta(G),\lceil\omega(G)\rceil\}$ and $\max \{\Delta(G)+1,\lceil\omega(G)\rceil\}$.

Consequences of the Goldberg-Seymour conjecture

Seymour showed that χ_{f}^{\prime} can be computed in polynomial time and $\chi_{f}^{\prime}(G)=\max \{\Delta(G), \omega(G)\}$.
So the Goldberg-Seymour conjecture implies that:

- A polynomial time algorithm to approximate the chromatic index within one color by computing χ_{f}^{\prime}. In fact, determining the chromatic index is considered to be one of the easiest NP-complete problems in this sense.
- There are only two possible choices for $\chi^{\prime}(G): \max \{\Delta(G),\lceil\omega(G)\rceil\}$ and $\max \{\Delta(G)+1,\lceil\omega(G)\rceil\}$.

Several related conjectures

Jakobsen (1973)

Let G be a critical graph and $\chi^{\prime}(G)>\frac{m}{m-3} \Delta(G)+\frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)
 If G is an r-regular graph such that $\left|\partial_{G}(X)\right| \geq r$ for every set $X \subseteq V(G)$ with $|X|$ odd (such a graph is said to be an r-graph), then G satisfies
 - $2|E(X)| \leq r|X|-r$ for every odd subset X.
 - $\omega(G)=\frac{2|E(X)|}{X \mid-1} \leq \frac{r|X|-r}{|X|-1}=r$.
 - So $\chi^{\prime}(G) \leq \max \{r+1,\lceil\omega(G)\rceil\}=r+1$

Several related conjectures

Jakobsen (1973)

Let G be a critical graph and $\chi^{\prime}(G)>\frac{m}{m-3} \Delta(G)+\frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

If G is an r-regular graph such that $\left|\partial_{G}(X)\right| \geq r$ for every set $X \subseteq V(G)$ with $|X|$ odd (such a graph is said to be an r-graph), then G satisfies $\chi^{\prime}(G) \leq r+1$.

- $2|E(X)| \leq r|X|-r$ for every odd subset X

Several related conjectures

Jakobsen (1973)

Let G be a critical graph and $\chi^{\prime}(G)>\frac{m}{m-3} \Delta(G)+\frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

If G is an r-regular graph such that $\left|\partial_{G}(X)\right| \geq r$ for every set $X \subseteq V(G)$ with $|X|$ odd (such a graph is said to be an r-graph), then G satisfies $\chi^{\prime}(G) \leq r+1$.

- $2|E(X)| \leq r|X|-r$ for every odd subset X.
- So $\chi^{\prime}(G) \leq \max \{r+1,\lceil\omega(G)\rceil\}=r+1$.

Several related conjectures

Jakobsen (1973)

Let G be a critical graph and $\chi^{\prime}(G)>\frac{m}{m-3} \Delta(G)+\frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

If G is an r-regular graph such that $\left|\partial_{G}(X)\right| \geq r$ for every set $X \subseteq V(G)$ with $|X|$ odd (such a graph is said to be an r-graph), then G satisfies $\chi^{\prime}(G) \leq r+1$.

- $2|E(X)| \leq r|X|-r$ for every odd subset X.
- $\omega(G)=\frac{2|E(X)|}{|X|-1} \leq \frac{r|X|-r}{|X|-1}=r$.
- So $\chi^{\prime}(G) \leq \max \{r+1,\lceil\omega(G)\rceil\}=r+1$.

Several related conjectures

Jakobsen (1973)

Let G be a critical graph and $\chi^{\prime}(G)>\frac{m}{m-3} \Delta(G)+\frac{m-3}{m-1}$ for an odd integer $m \geq 3$, then $|V(G)| \leq m-2$.

Seymour (1979)

If G is an r-regular graph such that $\left|\partial_{G}(X)\right| \geq r$ for every set $X \subseteq V(G)$ with $|X|$ odd (such a graph is said to be an r-graph), then G satisfies $\chi^{\prime}(G) \leq r+1$.

- $2|E(X)| \leq r|X|-r$ for every odd subset X.
- $\omega(G)=\frac{2|E(X)|}{|X|-1} \leq \frac{r|X|-r}{|X|-1}=r$.
- So $\chi^{\prime}(G) \leq \max \{r+1,\lceil\omega(G)\rceil\}=r+1$.

Kempe change

- A graph G is called critical if $\chi^{\prime}(H)<\chi^{\prime}(G)$ for any proper subgraph $H \subseteq G$. A graph G is called k-critical if it is critical and $\chi^{\prime}(G)=k+1$.
For the rest of this talk, we let $G=(E, V)$ be a k-critical graph, $e \in E_{G}(x, y)$ be an edge of G and φ be a k-edge-coloring of $G-e$. induced by edges colored by α and β. An (α, β)-chain is called an (α, β)-path if it is indeed a path.
- Let P be an (α, β)-path (chain) under the k-edge coloring φ. Then φ^{\prime} obtained from φ by interchanging colors α and β along P is also a k-edge coloring. This operation is called a Kempe Change, and is denoted by $\varphi^{\prime}=\varphi / P$.

Kempe change

- A graph G is called critical if $\chi^{\prime}(H)<\chi^{\prime}(G)$ for any proper subgraph $H \subseteq G$. A graph G is called k-critical if it is critical and $\chi^{\prime}(G)=k+1$.
For the rest of this talk, we let $G=(E, V)$ be a k-critical graph, $e \in E_{G}(x, y)$ be an edge of G and φ be a k-edge-coloring of $G-e$.
- For two colors α and β, an (α, β)-chain is a connected component of G induced by edges colored by α and β. An (α, β)-chain is called an (α, β)-path if it is indeed a path.
- Let P be an (α, β)-path (chain) under the k-edge coloring φ. Then φ obtained from φ by interchanging colors α and β along P is also a k-edge coloring. This operation is called a Kempe Change, and is denoted by $\varphi^{\prime}=\varphi / P$.

Kempe change

- A graph G is called critical if $\chi^{\prime}(H)<\chi^{\prime}(G)$ for any proper subgraph $H \subseteq G$. A graph G is called k-critical if it is critical and $\chi^{\prime}(G)=k+1$.
For the rest of this talk, we let $G=(E, V)$ be a k-critical graph, $e \in E_{G}(x, y)$ be an edge of G and φ be a k-edge-coloring of $G-e$.
- For two colors α and β, an (α, β)-chain is a connected component of G induced by edges colored by α and β. An (α, β)-chain is called an (α, β)-path if it is indeed a path.
- Let P be an (α, β)-path (chain) under the k-edge coloring φ. Then φ^{\prime} obtained from φ by interchanging colors α and β along P is also a k-edge coloring. This operation is called a Kempe Change, and is denoted by $\varphi^{\prime}=\varphi / P$.

More notations

- For any $v \in V$, let $\varphi(v):=\{\varphi(e): e \in E(v)\}$ denote the set of colors presented at v and $\bar{\varphi}(v)=\{1,2, \cdots, k\} \backslash \varphi(v)$ the set of colors missing at v.

- For any vertex set $X \subseteq V$, let $\bar{\varphi}(X)=\cup_{x \in X} \bar{\varphi}(x)$ be the set of colors missing at some vertices of X.

More notations

- For any $v \in V$, let $\varphi(v):=\{\varphi(e): e \in E(v)\}$ denote the set of colors presented at v and $\bar{\varphi}(v)=\{1,2, \cdots, k\} \backslash \varphi(v)$ the set of colors missing at v.

- For any vertex set $X \subseteq V$, let $\bar{\varphi}(X)=\cup_{x \in X} \bar{\varphi}(x)$ be the set of colors missing at some vertices of X.

More notations

An equivalent argument to the Goldberg-Seymour conjecture

The Goldberg-Seymour conjecture holds if and only if there is a vertex set $Z \subseteq V(G)$ with $e \in E(Z)$ which is both elementary and strongly closed for every k-critical graph G with $k>\Delta+1$.

- A vertex set $X \subseteq V(G)$ is called elementary if $\bar{\varphi}(v) \cap \bar{\varphi}(w)=\emptyset$ for any two distinct vertices $v, w \in X$.
- An edge f is called a boundary edge of X if f has exact one end-vertex in X and denote by $\partial(X)$ the set of all boundary edges of X. We call X closed if there is no missing color in vertices of X are assigned to any edges in $\partial(X)$.
- A color α is called a defective color of X if it appears more than once on edges in $\partial(X)$. Moreover, a closed vertex set X is called strongly closed if there is no defective colors of X

More notations

An equivalent argument to the Goldberg-Seymour conjecture

The Goldberg-Seymour conjecture holds if and only if there is a vertex set $Z \subseteq V(G)$ with $e \in E(Z)$ which is both elementary and strongly closed for every k-critical graph G with $k>\Delta+1$.

- A vertex set $X \subseteq V(G)$ is called elementary if $\bar{\varphi}(v) \cap \bar{\varphi}(w)=\emptyset$ for any two distinct vertices $v, w \in X$.
- An edge f is called a boundary edge of X if f has exact one end-vertex in X and denote by $\partial(X)$ the set of all boundary edges of X. We call X closed if there is no missing color in vertices of X are assigned to any edges in $\partial(X)$.
- A color α is called a defective color of X if it appears more than once on edges in $\partial(X)$. Moreover, a closed vertex set X is called strongly closed if there is no defective colors of X.

More notations

An equivalent argument to the Goldberg-Seymour conjecture

The Goldberg-Seymour conjecture holds if and only if there is a vertex set $Z \subseteq V(G)$ with $e \in E(Z)$ which is both elementary and strongly closed for every k-critical graph G with $k>\Delta+1$.

- A vertex set $X \subseteq V(G)$ is called elementary if $\bar{\varphi}(v) \cap \bar{\varphi}(w)=\emptyset$ for any two distinct vertices $v, w \in X$.
- An edge f is called a boundary edge of X if f has exact one end-vertex in X and denote by $\partial(X)$ the set of all boundary edges of X. We call X closed if there is no missing color in vertices of X are assigned to any edges in $\partial(X)$.
- A color α is called a defective color of X if it appears more than once on edges in $\partial(X)$. Moreover, a closed vertex set X is called strongly closed if there is no defective colors of X.

More Notations

An equivalent argument to the Goldberg-Seymour conjecture

The Goldberg-Seymour conjecture holds if and only if there is a vertex set $Z \subseteq V(G)$ with $e \in E(Z)$ which is both elementary and strongly closed for every k-critical graph G with $k>\Delta+1$.

More Notations

An equivalent argument to the Goldberg-Seymour conjecture

The Goldberg-Seymour conjecture holds if and only if there is a vertex set $Z \subseteq V(G)$ with $e \in E(Z)$ which is both elementary and strongly closed for every k-critical graph G with $k>\Delta+1$.

Too see this, let $Z \subseteq V(G)$ be a strongly closed elementary set. Then

- $|Z|$ is odd.
- Each color in $\bar{\varphi}(Z)$ induces $\frac{|Z|-1}{2}$ many edges in $G[Z]$.
- Each color in $\{1,2, \ldots, k\}-\bar{\varphi}(Z)$ induces $\frac{|Z|-1}{2}$ many edges in $G[Z]$.
- This gives us $k \frac{|Z|-1}{2}$ many edges. With the uncolored edge e, we see that $\lceil\omega(Z)\rceil \geq k+1=\chi^{\prime}(G)$, as desired.

Tashkinov Trees

A Tashkinov tree $T=\left(y_{0}, e_{1}, y_{1}, e_{2}, \cdots, y_{p-1}, e_{p}, y_{p}\right)$ is an alternating sequence of distinct vertices y_{i} and edges e_{i} of G, such that the endvertices of each e_{i} are y_{i+1} and y_{r} for some $r \in\{1,2, \ldots, i\}, e_{1}=e$ and $\varphi\left(e_{i}\right)$ is missing at y_{j} for some $j<i$. Note that the edge set of T indeed forms a tree.

Tashkinov Trees

A Tashkinov tree $T=\left(y_{0}, e_{1}, y_{1}, e_{2}, \cdots, y_{p-1}, e_{p}, y_{p}\right)$ is an alternating sequence of distinct vertices y_{i} and edges e_{i} of G, such that the endvertices of each e_{i} are y_{i+1} and y_{r} for some $r \in\{1,2, \ldots, i\}, e_{1}=e$ and $\varphi\left(e_{i}\right)$ is missing at y_{j} for some $j<i$. Note that the edge set of T indeed forms a tree.

$$
\begin{gathered}
1: y_{0} \quad y_{1} \quad 1 \quad y_{2} \\
e_{1}=e e^{2}
\end{gathered}
$$

Tashkinov Trees

A Tashkinov tree $T=\left(y_{0}, e_{1}, y_{1}, e_{2}, \cdots, y_{p-1}, e_{p}, y_{p}\right)$ is an alternating sequence of distinct vertices y_{i} and edges e_{i} of G, such that the endvertices of each e_{i} are y_{i+1} and y_{r} for some $r \in\{1,2, \ldots, i\}, e_{1}=e$ and $\varphi\left(e_{i}\right)$ is missing at y_{j} for some $j<i$. Note that the edge set of T indeed forms a tree.

Tashkinov Trees

A Tashkinov tree $T=\left(y_{0}, e_{1}, y_{1}, e_{2}, \cdots, y_{p-1}, e_{p}, y_{p}\right)$ is an alternating sequence of distinct vertices y_{i} and edges e_{i} of G, such that the endvertices of each e_{i} are y_{i+1} and y_{r} for some $r \in\{1,2, \ldots, i\}, e_{1}=e$ and $\varphi\left(e_{i}\right)$ is missing at y_{j} for some $j<i$. Note that the edge set of T indeed forms a tree.

Tashkinov Trees

A Tashkinov tree $T=\left(y_{0}, e_{1}, y_{1}, e_{2}, \cdots, y_{p-1}, e_{p}, y_{p}\right)$ is an alternating sequence of distinct vertices y_{i} and edges e_{i} of G, such that the endvertices of each e_{i} are y_{i+1} and y_{r} for some $r \in\{1,2, \ldots, i\}, e_{1}=e$ and $\varphi\left(e_{i}\right)$ is missing at y_{j} for some $j<i$. Note that the edge set of T indeed forms a tree.

Weakness of the Tashkinov trees.

- A Tashkinov tree may not be strongly closed, though it could be closed.
- A Tashkinov tree must have each edge added with a color missing at a vertex before that edge.

Generalization

- A tree sequence $T=\left(y_{0}, e_{1}, y_{1}, e_{2}, \cdots, y_{p-1}, e_{p}, y_{p}\right)$ is an alternating sequence of distinct vertices y_{i} and edges e_{i} of G, such that the endvertices of each e_{i} are y_{i+1} and y_{r} for some $r \in\{1,2, \ldots, i\}$.
- If a tree sequence T is not closed, the algorithm of adding an edge $f \in \partial(T)$ and the corresponded vertex with $\varphi(f) \in \bar{\varphi}(T)$ to T is called Tashkinov Augmenting Algorithm (TAA).
- A closure \bar{T} of T is a tree-sequence obtained from T by applying TAA repeatedly until T is closed.

Generalization

- A tree sequence $T=\left(y_{0}, e_{1}, y_{1}, e_{2}, \cdots, y_{p-1}, e_{p}, y_{p}\right)$ is an alternating sequence of distinct vertices y_{i} and edges e_{i} of G, such that the endvertices of each e_{i} are y_{i+1} and y_{r} for some $r \in\{1,2, \ldots, i\}$.
- If a tree sequence T is not closed, the algorithm of adding an edge $f \in \partial(T)$ and the corresponded vertex with $\varphi(f) \in \bar{\varphi}(T)$ to T is called Tashkinov Augmenting Algorithm (TAA).
- A closure \bar{T} of T is a tree-sequence obtained from T by applying TAA repeatedly until T is closed.

Generalization

- A tree sequence $T=\left(y_{0}, e_{1}, y_{1}, e_{2}, \cdots, y_{p-1}, e_{p}, y_{p}\right)$ is an alternating sequence of distinct vertices y_{i} and edges e_{i} of G, such that the endvertices of each e_{i} are y_{i+1} and y_{r} for some $r \in\{1,2, \ldots, i\}$.
- If a tree sequence T is not closed, the algorithm of adding an edge $f \in \partial(T)$ and the corresponded vertex with $\varphi(f) \in \bar{\varphi}(T)$ to T is called Tashkinov Augmenting Algorithm (TAA).
- A closure \bar{T} of T is a tree-sequence obtained from T by applying TAA repeatedly until T is closed.

New ideas

- For any color set C, an edge- k-coloring φ^{*} of $G-e$ is (T, C, φ)-stable if the following two properties hold.
(1) $\varphi^{*}(f)=\varphi(f)$ for every edge f incident to T with $\varphi(f) \in \bar{\varphi}(T) \cup C$.
(2) $\bar{\varphi}^{*}(v)=\bar{\varphi}(v)$ for any $v \in V(T)$, which gives $\bar{\varphi}^{*}(T)=\bar{\varphi}(T)$.

We say a coloring φ^{*} is $(\emptyset, \emptyset, \varphi)$-stable if φ^{*} is an edge- k-coloring φ^{*} of $G-e$.

Goals of this concept

- To make sure that defective colors stay defective, and closed colors stay
closed.
- To make induction work properly.

New ideas

- For any color set C, an edge- k-coloring φ^{*} of $G-e$ is (T, C, φ)-stable if the following two properties hold.
(1) $\varphi^{*}(f)=\varphi(f)$ for every edge f incident to T with $\varphi(f) \in \bar{\varphi}(T) \cup C$.
(2) $\bar{\varphi}^{*}(v)=\bar{\varphi}(v)$ for any $v \in V(T)$, which gives $\bar{\varphi}^{*}(T)=\bar{\varphi}(T)$.

We say a coloring φ^{*} is $(\emptyset, \emptyset, \varphi)$-stable if φ^{*} is an edge- k-coloring φ^{*} of $G-e$.

Goals of this concept

- To make sure that defective colors stay defective, and closed colors stay closed.
- To make induction work properly.

New ideas

- Colors α and β are T-interchangeable if there is at most one (α, β)-path intersecting T.

Goal of this concept

- To have colors interchanging with defective colors along a color alternating chain.

Example
 Let T be a closed Tashkinov tree of G under φ. Then every color $\alpha \in \bar{\varphi}(T)$ is interchangeable with every color in φ for T.

New ideas

- Colors α and β are T-interchangeable if there is at most one (α, β)-path intersecting T.

Goal of this concept

- To have colors interchanging with defective colors along a color alternating chain.
\square
Example
Let T be a closed Tashkinov tree of G under φ. Then every color $\alpha \in \bar{\varphi}(T)$ is interchangeable with every color in φ for T

New ideas

- Colors α and β are T-interchangeable if there is at most one (α, β)-path intersecting T.

Goal of this concept

- To have colors interchanging with defective colors along a color alternating chain.

Example

Let T be a closed Tashkinov tree of G under φ. Then every color $\alpha \in \bar{\varphi}(T)$ is interchangeable with every color in φ for T.

A proof of the example

Consider a counter-example as the above figure where α and β are not interchangeable, and assume among all the counter-examples, $\left|P_{1}\right|+\left|P_{2}\right|+\left|P_{3}\right|=L$ is minimum.

A proof of the example

Note that T is still a Tashkinov tree under φ_{1} obtained from φ by switching γ and α outside of T.

A proof of the example

Let $\varphi_{2}=\varphi_{1} / P_{1}$.

A proof of the example

Let T^{\prime} be a closed Tashkinov tree obtained from $T\left(u_{1}\right)$ after adding the vertices v_{2} and v_{3}. Note that we have a contradiction to the elementariness of the Tashkinov trees if one of w_{1}, w_{2}, w_{3} is contained in T^{\prime}, and a contradiction to $\left|P_{1}\right|+\left|P_{2}\right|+\left|P_{3}\right|=L$ being minimum otherwise.

Ideas

- Starting from an elementary tree sequence T which is not closed, we reserve two interchangeable colors for each defective color before it is missing when applying TAA to find a closure of T through a few "steps", and prove its closure is elementary.
- Starting from an closed elementary tree sequence T, we find a new vertex $v \notin T$ such that $T \cup v$ is elementary if T is not strongly closed.

Ideas

- Starting from an elementary tree sequence T which is not closed, we reserve two interchangeable colors for each defective color before it is missing when applying TAA to find a closure of T through a few "steps", and prove its closure is elementary.
- Starting from an closed elementary tree sequence T, we find a new vertex $v \notin T$ such that $T \cup v$ is elementary if T is not strongly closed.

Ideas

For the second point, we need to introduce two main types of extensions if T is closed but not strongly closed. Assume δ is a defective color in this case.

- Series Extension (SE): If $T \cup\{g, v\}$ is elementary under all (T, C, φ)-stable colorings, we extend $T \cup\{g, v\}$ to its closure under φ.

Ideas

For the second point, we need to introduce two main types of extensions if T is closed but not strongly closed. Assume δ is a defective color in this case.

- Parallel Extension (PE): If the SE requirement is not satisfied, we can then assume that there exists a color $\gamma \in \bar{\varphi}(u) \cup \bar{\varphi}(v)$. Recolor the edge g by γ, update the coloring φ, and find a closure of T under this new coloring.

Elementariness of PE extensions

For a PE extension, we have a different situation than an SE extension, as we only add one more vertex to an SE extension to start this phase of our induction. Let $T(u)$ be the subsequence of T ending at u. Then a closure $T^{\prime}:=\overline{T(u)}$ contains at least two vertices not in T. We claim that $T \cup T^{\prime}$ is elementary under the updated φ.

Elementariness of PE extensions

For a PE extension, we have a different situation than an SE extension, as we only add one more vertex to an SE extension to start this phase of our induction. Let $T(u)$ be the subsequence of T ending at u. Then a closure $T^{\prime}:=\overline{T(u)}$ contains at least two vertices not in T. We claim that $T \cup T^{\prime}$ is elementary under the updated φ.

Main Theorem

Let n be a nonnegative integer and (G, e, φ) be a k-triple with $k \geq \Delta+1$. Then for every ETT T satisfying MP with ladder $T_{0} \subset T_{1} \subset \cdots \subset T_{n} \subset T$ and coloring sequence $\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right)$, the following six statements hold.

A1: For any positive integer l with $l \leq n$, if v_{l} is a supporting vertex and $m\left(v_{l}\right)=j$, then every $\left(T_{l}, D_{l}, \varphi_{l}\right)$-stable coloring φ_{l}^{*} is
$\left(T_{v_{l}}-\left\{v_{l}\right\}, D_{j-1}, \varphi_{j-1}\right)$-stable, particularly, φ_{l}^{*} is
$\left(T_{j-1}, D_{j-1}, \varphi_{j-1}\right)$-stable. For any two supporting vertices v_{s} and v_{t} with $s, t \leq n$, if $m\left(v_{s}\right)=m\left(v_{t}\right)$ but $v_{s} \neq v_{t}$, then $S_{s} \cap S_{t}=\emptyset$.

A2: If $\Theta_{n}=P E$, then under any $\left(T_{n}, D_{n}, \varphi_{n}\right)$-stable coloring φ_{n}^{*}, we have $P_{v_{n}}\left(\gamma_{n}, \delta_{n}, \varphi_{n}^{*}\right) \cap T_{n}=\left\{v_{n}\right\}$ where $S_{n}=\left\{\delta_{n}, \gamma_{n}\right\}$.

Main Theorem

A3: For any $\left(T_{n}, D_{n}, \varphi_{n}\right)$-stable coloring φ_{n}^{*}, if δ is a defective color of T_{n} under φ_{n}^{*} and $v \in a\left(\partial_{\varphi_{n}^{*}, \delta}\left(T_{n}\right)\right)$ where v is not the smallest vertex along \prec_{ℓ} in $a\left(\partial_{\varphi_{n}^{*}, \delta}\left(T_{n}\right)\right)$, then $v \prec_{\ell} v_{i}$ for any supporting or extension vertex v_{i} with $i \geq m(v)$.

A4: Every $\left(T_{n}, D_{n}, \varphi_{n}\right)$-stable coloring φ_{n}^{*} is a $\varphi_{n} \bmod T$ coloring and every corresponding ETT T^{*} obtained from T_{n} under φ_{n}^{*} using the same extension type as $T_{n} \rightarrow T$ also satisfies MP.

A5: T is elementary under φ_{n}.
A6: T has Interchangeable Missing Colors property if T is closed.

Thanks for your attention!

